Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Large language Models (LLMs), though growing exceedingly powerful, comprises of orders of magnitude less neurons and synapses than the human brain. However, it requires significantly more power/energy to operate. In this work, we propose a novel bio-inspired spiking language model (LM) which aims to reduce the computational cost of conventional LMs by drawing motivation from the synaptic information flow in the brain. In this paper, we demonstrate a framework that leverages the average spiking rate of neurons at equilibrium to train a neuromorphic spiking LM using implicit differentiation technique, thereby overcoming the non-differentiability problem of spiking neural network (SNN) based algorithms without using any type of surrogate gradient. The steady-state convergence of the spiking neurons also allows us to design a spiking attention mechanism, which is critical in developing a scalable spiking LM. Moreover, the convergence of average spiking rate of neurons at equilibrium is utilized to develop a novel ANN-SNN knowledge distillation based technique wherein we use a pre-trained BERT model as “teacher” to train our “student” spiking architecture. While the primary architecture proposed in this paper is motivated by BERT, the technique can be potentially extended to different kinds of LLMs. Our work is the first one to demonstrate the performance of an operational spiking LM architecture on multiple different tasks in the GLUE benchmark. Our implementation source code is available at https://github.com/NeuroCompLab-psu/SpikingBERT.more » « less
-
Equilibrium Propagation (EP) is a powerful and more bio-plausible alternative to conventional learning frameworks such as backpropagation. The effectiveness of EP stems from the fact that it relies only on local computations and requires solely one kind of computational unit during both of its training phases, thereby enabling greater applicability in domains such as bio-inspired neuromorphic computing. The dynamics of the model in EP is governed by an energy function and the internal states of the model consequently converge to a steady state following the state transition rules defined by the same. However, by definition, EP requires the input to the model (a convergent RNN) to be static in both the phases of training. Thus it is not possible to design a model for sequence classification using EP with an LSTM or GRU like architecture. In this paper, we leverage recent developments in modern hopfield networks to further understand energy based models and develop solutions for complex sequence classification tasks using EP while satisfying its convergence criteria and maintaining its theoretical similarities with recurrent backpropagation. We explore the possibility of integrating modern hopfield networks as an attention mechanism with convergent RNN models used in EP, thereby extending its applicability for the first time on two different sequence classification tasks in natural language processing viz. sentiment analysis (IMDB dataset) and natural language inference (SNLI dataset). Our implementation source code is available at https://github.com/NeuroCompLab-psu/EqProp-SeqLearning.more » « less
An official website of the United States government
